Inkjet Printing of High Aspect Ratio Superparamagnetic SU-8 Microstructures with Preferential Magnetic Directions
نویسندگان
چکیده
Structuring SU-8 based superparamagnetic polymer composite (SPMPC) containing Fe3O4 nanoparticles by photolithography is limited in thickness due to light absorption by the nanoparticles. Hence, obtaining thicker structures requires alternative processing techniques. This paper presents a method based on inkjet printing and thermal curing for the fabrication of much thicker hemispherical microstructures of SPMPC. The OPEN ACCESS Micromachines 2014, 5 584 microstructures are fabricated by inkjet printing the nanoparticle-doped SU-8 onto flat substrates functionalized to reduce the surface energy and thus the wetting. The thickness and the aspect ratio of the printed structures are further increased by printing the composite onto substrates with confinement pedestals. Fully crosslinked microstructures with a thickness up to 88.8 μm and edge angle of 112° ± 4° are obtained. Manipulation of the microstructures by an external field is enabled by creating lines of densely aggregated nanoparticles inside the composite. To this end, the printed microstructures are placed within an external magnetic field directly before crosslinking inducing the aggregation of dense Fe3O4 nanoparticle lines with in-plane and out-of-plane directions.
منابع مشابه
Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy.
We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform diff...
متن کاملThe Inkjet Printing of Reducible AgNPs amperometric glucose biosensor Electrodes
The enzymes immobilization of the is crucially effective factor in biosensor preparation. Metal nanoparticles potentially able to immobilize the enzymes according to unique properties including large surface-to-volume ratio, high surface reaction activity, high catalytic efficiency, and strong adsorption ability. A novel and highly sensitive amperometric glucose biosensor was obtained by using ...
متن کاملStudy on the postbaking process and the effects on UV lithography of high aspect ratio SU-8 microstructures
John D. Williams Wanjun Wang Louisiana State University Department of Mechanical Engineering Baton Rouge, Louisiana 70803 E-mail: [email protected] Abstract. In recent years, a relatively new type of negative photoresist, EPON SU-8, has received a lot of attention in the MEMS field because of its excellent lithography properties. Significant research efforts have been made to study the lithographic ...
متن کاملUltrathick SU-8 fabrication for microreciprocating engines
Nianjun Sun Beijing Aeronautical Manufacturing Technology Research Institute P.O. Box 863 Beijing 100024 China Abstract. We present a high-quality UV-lithography process for making high aspect ratio microstructures for microengines using an ultrathick SU-8 photoresist layer. The microreciprocating engine project, which is ongoing at the University of Birmingham, aims to develop a compact power ...
متن کاملSelective Metallization of Cured Su-8 Microstructures Using Electroless Plating Method
In this talk, we report a research work on fabrication and metallization of high aspect ratio polymer microstructures fabricated using UV lithography of SU-8 on silicon substrate. Electroless plating of metal film on both the top and sidewall surfaces of microstructures were achieved while the silicon substrate was not plated. The primary chemical mechanisms and possible applications were also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Micromachines
دوره 5 شماره
صفحات -
تاریخ انتشار 2014